Toxicity and population structure of the Rough‐Skinned Newt (Taricha granulosa) outside the range of an arms race with resistant predators
نویسندگان
چکیده
Species interactions, and their fitness consequences, vary across the geographic range of a coevolutionary relationship. This spatial heterogeneity in reciprocal selection is predicted to generate a geographic mosaic of local adaptation, wherein coevolutionary traits are phenotypically variable from one location to the next. Under this framework, allopatric populations should lack variation in coevolutionary traits due to the absence of reciprocal selection. We examine phenotypic variation in tetrodotoxin (TTX) toxicity of the Rough-Skinned Newt (Taricha granulosa) in regions of allopatry with its TTX-resistant predator, the Common Garter Snake (Thamnophis sirtalis). In sympatry, geographic patterns of phenotypic exaggeration in toxicity and toxin-resistance are closely correlated in prey and predator, implying that reciprocal selection drives phenotypic variation in coevolutionary traits. Therefore, in allopatry with TTX-resistant predators, we expect to find uniformly low levels of newt toxicity. We characterized TTX toxicity in northwestern North America, including the Alaskan panhandle where Ta. granulosa occur in allopatry with Th. sirtalis. First, we used microsatellite markers to estimate population genetic structure and determine if any phenotypic variation in toxicity might be explained by historical divergence. We found northern populations of Ta. granulosa generally lacked population structure in a pattern consistent with northern range expansion after the Pleistocene. Next, we chose a cluster of sites in Alaska, which uniformly lacked genetic divergence, to test for phenotypic divergence in toxicity. As predicted, overall levels of newt toxicity were low; however, we also detected unexpected among- and within-population variation in toxicity. Most notably, a small number of individuals contained large doses of TTX that rival means of toxic populations in sympatry with Th. sirtalis. Phenotypic variation in toxicity, despite limited neutral genetic divergence, suggests that factors other than reciprocal selection with Th. sirtalis likely contribute to geographic patterns of toxicity in Ta. granulosa.
منابع مشابه
The Evolution Arms Race of Garter Snakes and Newts
In evolutionary biology, predator-prey species pairs can be observed participating in evolutionary arms races between adaptations and counter-adaptations. For example, as a prey becomes more adept at avoiding capture, its predator becomes a more adept hunter. The rough-skinned newt (Taricha granulosa) produces a toxin that protects it from virtually all predators, except one. That one predator ...
متن کاملCoevolution of Deadly Toxins and Predator Resistance: Self-assessment of Resistance by Garter Snakes Leads to Behavioral Rejection of Toxic Newt Prey
Deadly toxins and resistance to them are an evolutionary enigma. Selection for increased resistance does not occur if predators do not survive encounters with toxic prey. Similarly, deadly toxins are of no advantage to individual prey if it dies delivering the toxins. For individual selection to drive the coevolutionary arms race between resistant predators and lethal prey, the survivorship of ...
متن کاملSex-biased Predation on Newts of the Genus Taricha by a Novel Predator and its Relationship with Tetrodotoxin Toxicity
—Newts of the genus Taricha have long been studied in regards to their skin toxin, tetrodotoxin (TTX). It has been shown that the TTX levels across populations of Taricha are highly variable, and this has been mostly attributed to the interaction between Taricha and their only documented predators, garter snakes of the genus Thamnophis. Here we show that predators other than Thamnophis prey ext...
متن کاملIsolation by distance and post-glacial range expansion in the rough-skinned newt, Taricha granulosa.
Allozymes and mitochondrial DNA sequences were used to examine the phylogeographical history of the rough-skinned newt, Taricha granulosa, in western North America. Nineteen populations were analysed for allozyme variation at 45 loci, and 23 populations were analysed for cytochrome b sequence variation. Both data sets agree that populations in the southern part of the range are characterized by...
متن کاملCloning proenkephalin from the brain of a urodele amphibian (Taricha granulosa) using a DOR-specific primer in a 3'RACE reaction.
A large cDNA fragment that codes for proenkephalin (PENK) was cloned from the rough-skinned newt, Taricha granulosa (GenBank Accession: AY817670). This 1299-bp PENK cDNA extends from the poly(A) sequence on the 3' end into the 5'-UTR (221bp) upstream of an open reading frame that codes for 264 amino acids and a stop codon. Within the precursor are five Met-enkephalin sequences and two C-termina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016